Dot Net Framework Architecture and Overview

To understand how the common language runtime manages code execution, you must examine the structure of a .NET application. The primary unit of a .NET application is the assembly. An assembly is a self-describing collection of code, resources, and metadata. The assembly manifest contains information about what is contained within the assembly. The assembly manifest provides:

Dot Net Framework Architecture

Dot Net Framework Architecture

·Identity information, such as the assembly’s name and version number
·A list of all types exposed by the assembly
·A list of other assemblies required by the assembly
·A list of code access security instructions, including permissions required by the assembly and permissions to be denied the assembly

Each assembly has one and only one assembly manifest, and it contains all the description information for the assembly. However, the assembly manifest can be contained in its own file or within one of the assembly’s modules.

An assembly contains one or more modules. A module contains the code that makes up your application or library, and it contains metadata that describes that code. When you compile a project into an assembly, your code is converted from high-level code to IL. Because all managed code is first converted to IL code, applications written in different languages can easily interact. For example, one developer might write an application in Visual C# that accesses a DLL in Visual Basic .NET. Both resources will be converted to IL modules before being executed, thus avoiding any language-incompatibility issues.

Each module also contains a number of types. Types are templates that describe a set of data encapsulation and functionality. There are two kinds of types: reference types (classes) and value types (structures). These types are discussed in greater detail in Lesson 2 of this chapter. Each type is described to the common language runtime in the assembly manifest. A type can contain fields, properties, and methods, each of which should be related to a common functionality. For example, you might have a class that represents a bank account. It contains fields, properties, and methods related to the functions needed to implement a bank account. A field represents storage of a particular type of data. One field might store the name of an account holder, for example. Properties are similar to fields, but properties usually provide some kind of validation when data is set or retrieved. You might have a property that represents an account balance. When an attempt is made to change the value, the property can check to see if the attempted change is greater than a predetermined limit. If the value is greater than the limit, the property does not allow the change. Methods represent behavior, such as actions taken on data stored within the class or changes to the user interface. Continuing with the bank account example, you might have a Transfer method that transfers a balance from a checking account to a savings account, or an Alert method that warns users when their balances fall below a predetermined level.

Overview of the .NET Framework

The .NET Framework is a managed type-safe environment for application development and execution. The .NET Framework manages all aspects of your program’s execution. It allocates memory for the storage of data and instructions, grants or denies the appropriate permissions to your application, initiates and manages application execution, and manages the reallocation of memory from resources that are no longer needed. The .NET Framework consists of two main components: the common language runtime and the .NET Framework class library.

The common language runtime can be thought of as the environment that manages code execution. It provides core services, such as code compilation, memory allocation, thread management, and garbage collection. Through the common type system (CTS), it enforces strict type-safety and ensures that code is executed in a safe environment by also enforcing code access security. The .NET Framework class library provides a collection of useful and reusable types that are designed to integrate with the common language runtime. The types provided by the .NET Framework are object-oriented and fully extensible, and they allow you to seamlessly integrate your applications with the .NET Framework.

Languages and the .NET Framework:
The .NET Framework is designed for cross-language compatibility, which means, simply, that .NET components can interact with each other no matter what supported language they were written in originally. So, an application written in Microsoft Visual Basic .NET might reference a dynamic-link library (DLL) file written in Microsoft Visual C#, which in turn might access a resource written in managed Microsoft Visual C++ or any other .NET language. This language interoperability extends to full object-oriented inheritance. A Visual Basic .NET class might be derived from a C# class, for example, or vice versa.

This level of cross-language compatibility is possible because of the common language runtime. When a .NET application is compiled, it is converted from the language in which it was written (Visual Basic .NET, C#, or any other .NET-compliant language) to Microsoft Intermediate Language (MSIL or IL). MSIL is a low-level language that the common language runtime can read and understand. Because all .NET executables and DLLs exist as MSIL, they can freely interoperate. The Common Language Specification (CLS) defines the minimum standards to which .NET language compilers must conform. Thus, the CLS ensures that any source code successfully compiled by a .NET compiler can interoperate with the .NET Framework.

The CTS ensures type compatibility between .NET components. Because .NET applications are converted to IL prior to deployment and execution, all primitive data types are represented as .NET types. Thus, a Visual Basic Integerand a C# int are both represented in IL code as a System.Int32. Because both languages use a common type system, it is possible to transfer data between components and avoid time-consuming conversions or hard-to-find errors.

Visual Studio .NET ships with languages such as Visual Basic .NET, Visual C#, and Visual C++ with managed extensions, as well as the JScript scripting language. You can also write managed code for the .NET Framework in other languages. Third-party tools and compilers exist for FORTRAN, COBOL, Perl, and a host of other languages. All of these languages share the same cross-language compatibility and inheritability.